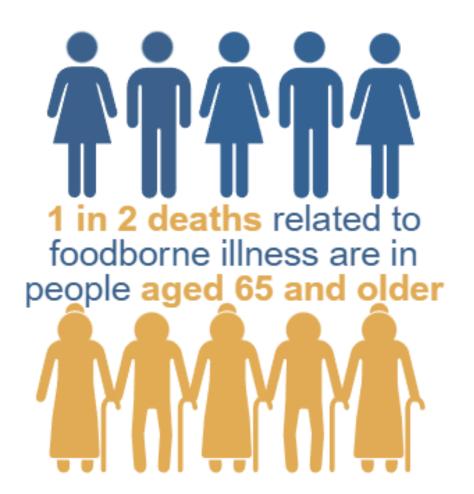



Long-term Care Syndromic Antimicrobial Stewardship Session #4 Focused Initiatives Directed Towards Diarrheal Illnesses and Early Detection of Facility Outbreaks Kellie Wark, MD, MPH | September 21, 2023 dick here to view recording

Presenter

Kellie Wark, MD, MPH Antimicrobial Stewardship Lead Kansas Department of Health and Environment Kellie.Wark@ks.gov

Asst. Professor of Infectious Disease The University of Kansas Health Systems kwark@kumc.edu


Objectives

- Discuss the regional and national epidemiology of *C. diff*, norovirus and rotavirus trends
- Identify and implement infection control strategies to limit spread of enteric pathogens in healthcare facilities
- Contrast C. diff prevention strategies
- Discuss diagnostic limitations of molecular testing (e.g., GI PCR panel)
- Compare regional hepatitis A trends and identify vaccination opportunities for hepatitis A

Epidemiology - Foodborne Diseases

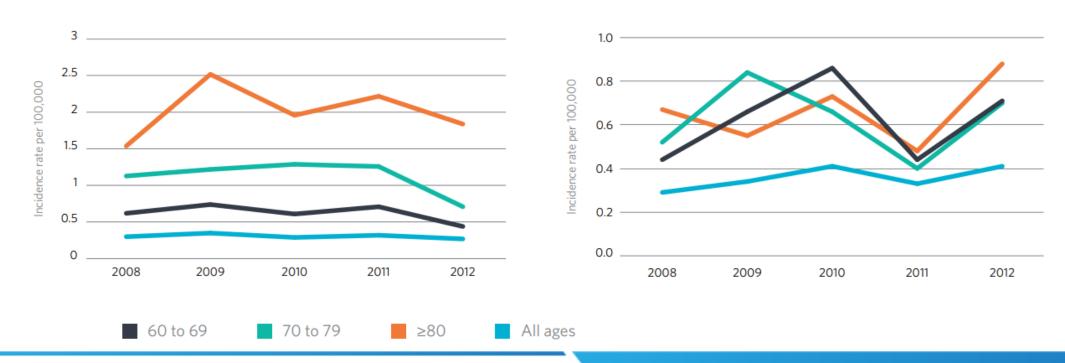
Contaminated food related cases:

- 148 million illnesses
- 128,000 hospitalizations (foodborne-related) to 228,000 (total enteric pathogen-related)
- 1,350 deaths (from US foods) to
 2,600 deaths (total enteric-related)

Sources: Delahoy M., et al. MMWR 2023;72(26);701-706. Scallan E. et al. EID 2011;17:7-15.

Factors placing senior citizens at higher risk for foodborne illness

- Immune function decreases with age
- Chronic diseases (malnutrition, immobility) associated with greater vulnerability to diarrheal illnesses
- Digestive system changes and reduced stomach acid production, the major defense against enteric pathogens
- Slower digestion, giving pathogens extended amount of time to colonize and infect
- Older people may be more likely to experience sequelae
 - Reactive arthritis, Guillain-Barre syndrome, irritable bowel disorder


Sources: Kendall P., et al. CID 2006; 42(9):1298-304. Lew J., et al. JAMA 1991;265; 3280-84.

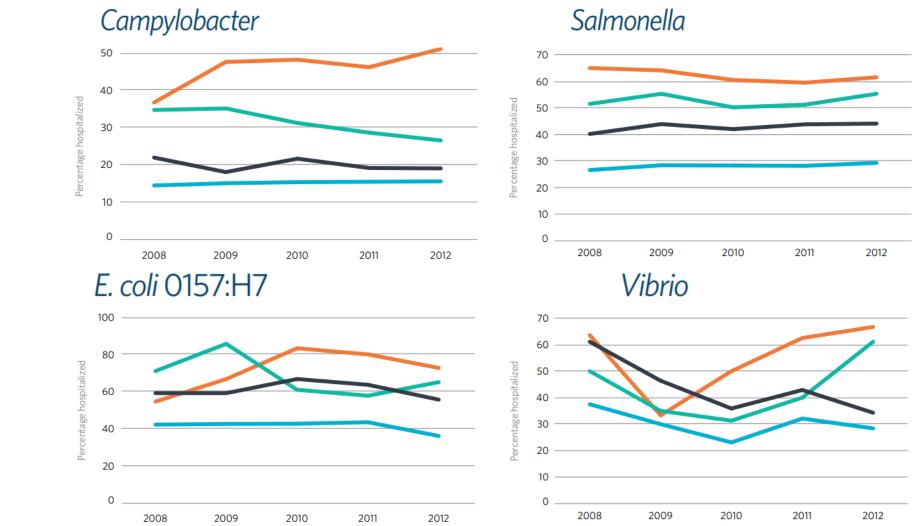
Seniors and Foodborne Diseases

Seniors are disproportionately affected by Listeria, Salmonella, E.coli 0157:H7, Vibrio

People Age 60 and Up Are Especially Vulnerable to *Listeria* and *Vibrio* Infections

Incidence of *Listeria* and *Vibrio* illnesses per 100,000 people, 2008-12

Vibrio

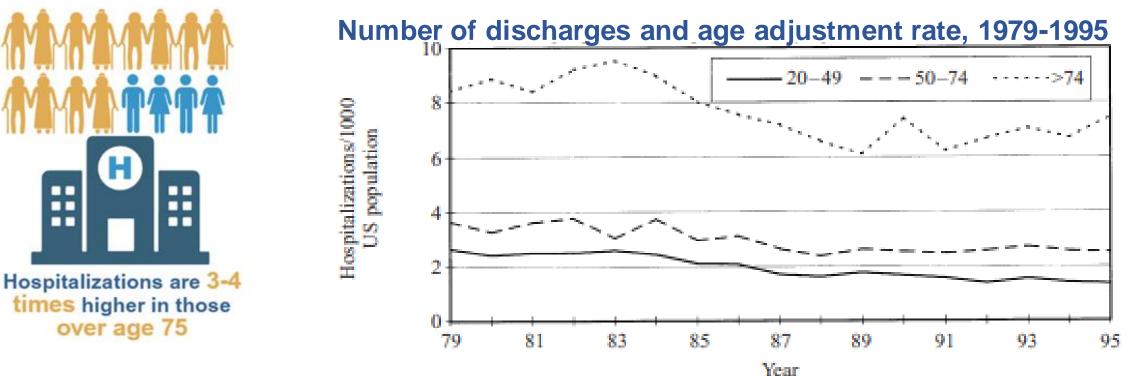

Sources: FoodNet Annual Reports-final data, cdc.gov/foodnet/data/reports.html. © 2014 The Pew Charitable Trusts

Listeria

To protect and improve the health and environment of all Kansans

Foodborne Illnesses Often Lead to Hospital Stays for People Age 60 and Up

Proportion of people hospitalized for *Campylobacter, Salmonella, E. coli* 0157:H7, and *Vibrio* illnesses, 2008-2012


All ages

Sources: FoodNet Annual Reports-final data, cdc.gov/foodnet/data/reports.html. © 2014 The Pew Charitable Trusts

Hospitalizations by Foodborne Diseases

Foodborne-related hospitalizations were highest among seniors

- Gastroenteritis accounted for 1.5% of all adult-related hospitalizations
- Highest in oldest, for >75 years 7.6 hospitalizations per 1000 persons

Hospitalizations by Foodborne Diseases

Gastroenteritis Hospitalizations by Month, 1979-1995 50000 Hospitalizations 40000 Number of 30000 ПГ 20000 -1979 - 83-1984 - 8810000--1989-95 2/3 gastroenteritis F М М S hospitalizations are amongst females Month

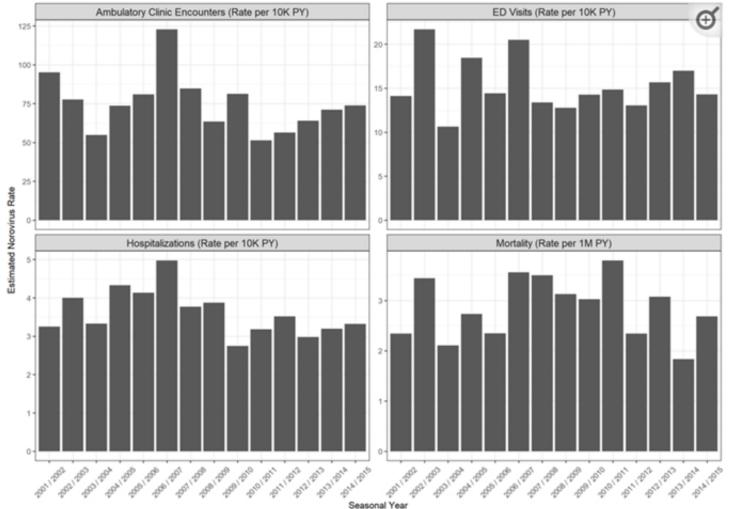
Healthy People 2030 - Foodborne Illnesses

Foodborne Illness				
Goal	Target(infections per 100,000 population)	Status		
Reduce Salmonella infections	Baseline: 15.3 (2016-18) Target: 11.5 Status: 13.3 (2021)	Improving		
Reduce Campylobacter infections	Baseline: 16.2 (2016-18) Target: 10.9 Status: 17.2 (2021)	Unchanged to worsening		
Reduce Shiga-toxin producing <i>E.coli</i> infections	Baseline: 4.6 (2016-18) Target: 3.7 Status: 4.6 (2021)	Unchanged		
Reduce Listeria infections	Baseline: 0.27 (2016-18) Target: 0.22 Status: 0.31 (2021)	Worsening		

Source: https://health.gov/healthypeople/objectives-and-data/browse-objectives/foodborne-illness

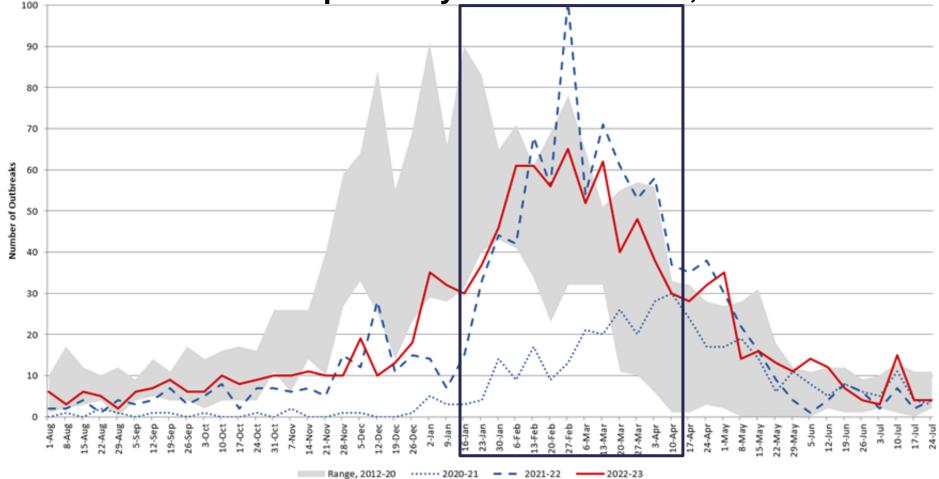
2022 Food Safety Report

Measuring progress toward foodborne illness prevention


Pathogen	Change from baseline	Rate in 2022	Target rate based on Healthy People 2030 goals
Campylobacter	7%	17.4	10.9
Cyclospora	430%	0.6	None
Listeria	No change	0.26	0.22
Salmonella	No change	14.5	11.5
Shigella	No change	3.9	None
STEC Shiga toxin-producing E. coli	No change	4.6	3.7
Vibrio	54%	0.9	None
Yersinia	144%	1.9	None

Rates & targets are numbers of infections per 100,000 people per year. They include only domestically acquired infections. Targets based on <u>Healthy People 2030 goals</u>, which were set using average annual incidences during 2016–2018. No change indicates that the 95% credible interval of the percentage change included zero. <u>For more information</u>. <u>visit cdc.gov/FoodNet</u>.

Hospitalizations by Norovirus


Norovirus associated clinic & ED visits are disproportionately high for those aged 85+

- Clinic visits:
 - Aged 85+: 151/10k personyears (PY)
 - All ages: 75/10k PY
 - 2.3 million clinic visits/year
- ED visits:
 - Aged 85+: 32/10k PY
 - All ages: 15/10k PY
 - 2.3 million ED visits/year

Seasonality of Norovirus

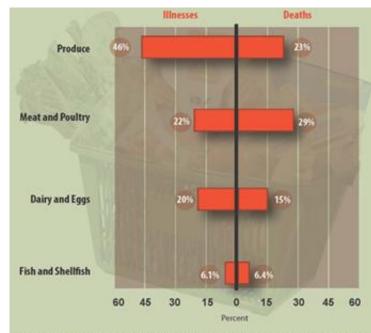
Norovirus Outbreaks Reported by NoroSTAT Sites, 2012-2023

Gastroenteritis

- Vomiting
- Nausea
- Fever, chills
- Abdominal pain
- "Stomach flu"
- Norovirus
- Rotavirus
- Sapovirus
- *S. aureus* (foodborne)
- Toxoplasma
- Hepatitis A
- B. cereus

Terminology and Common Pathogens

Colitis



- Diarrhea
- Nausea
- Abdominal pain

- Campylobacter
- Salmonella
- E. coli (ETEC, STEC)
- Shigella
- Listeria
- Cryptosporidium
- Cyclospora
- Giardia
- Yersinia

Common Sources

Contribution of Different Food Commodities (Categories) to Estimated Domestically-Acquired Illnesses and Deaths, 1998-2008

Chart does not show 5% of illnesses and 2% of deaths attributed to other commodities. In addition, 1% of illnesses and 25% of deaths were not attributed to commodities; these were caused by pathogens not in the outbreak database, mainly loxoplesme and Worio value. Table 1. Estimates of annual domestically acquired foodborne illnesses attributed to specific food commodities and commodity groups, by pathogen type, United States, 1998–2008

Commodity or commodity	No. (%) illnesses				
group	All agents	Bacterial	Chemical	Parasitic	Viral
Aquatic animals [†]	589,310 (6.1)	142,415 (3.9)	153,488 (61.6)	77,795 (33.3)	215,613 (3.9)
Fish	258,314 (2.7)	15,362 (0.4)	148,958 (59.8)	955 (0.4)	93,040 (1.7)
Shellfish†	330,997 (3.4)	127,053 (3.5)	4,531 (1.8)	76,840 (32.9)	122,573 (2.2)
Crustaceans	46,528 (0.5)	32,626 (0.9)	1,247 (0.5)		12,654 (0.2)
Mollusks	284,469 (3.0)	94,427 (2.6)	3,283 (1.3)	76,840 (32.9)	109,919 (2.0)
Land animals†	4,021,839 (41.7)	2,334,000 (64.0)	33,031 (13.3)	156 (0.1)	1,654,651 (30.0)
Dairy	1,330,098 (13.8)	656,951 (18.0)	3,773 (1.5)		669,374 (12.1)
Eggs	574,298 (6.0)	179,421 (4.9)	6,995 (2.8)		387,882 (7.0)
Meat-poultry†	2,117,442 (22.0)	1,497,628 (41.1)	22,263 (8.9)	156 (0.1)	597,394 (10.8)
Meatt	1,174,257 (12.2)	844,006 (23.2)	2,437 (1.0)	156 (0.1)	327,658 (5.9)
Beef	639,640 (6.6)	482,199 (13.2)	661 (0.3)		156,780 (2.8)
Game	9,934 (0.1)	5,111 (0.1)	1,568 (0.6)	156 (0.1)	3,100 (0.1)
Pork	524,684 (5.4)	356,697 (9.8)	209 (0.1)		167,778 (3.0)
Poultry	943,185 (9.8)	653,622 (17.9)	19,826 (8.0)		269 737 (4 9)
Plants†	4,924,877 (51.1)	1,169,202 (32.1)	62,753 (25.2)	69,023 (29.5)	3,623,899 (65.8)
Grains-beans	435,936 (4.5)	183,394 (5.0)	12,995 (5.2)		239,547 (4.3)
Oils-sugars	65,631 (0.7)	1 1 2 2 2	2,344 (0.9)		63,287 (1.1)
Produce†	4,423,310 (45.9)	985,807 (27.0)	47,414 (19.0)	69,023 (29.5)	3,321,066 (60.3)
Fruits-nuts	1,123,808 (11.7)	230,636 (6.3)	29,483 (11.8)	60,573 (25.9)	803,116 (14.6)
Vegetables†	3,299,501 (34.2)	755,171 (20.7)	17,931 (7.2)	8,450 (3.6)	2,517,949 (45.7)
Fungi	4,542 (0.0)	686 (0.0)	3,857 (1.5)	1	
Leafy	2,152,652 (22.3)	188,327 (5.2)	9,113 (3.7)	7,256 (3.1)	1,947,955 (35.4)
Root	349,715 (3.6)	96,910 (2.7)	1,240 (0.5)		251,566 (4.6)
Sprout	32,703 (0.3)	32,703 (0.9)			
Vine-stalk	759,889 (7.9)	436,546 (12.0)	3,721 (1.5)	1,194 (0.5)	318,428 (5.8)
Undetermined	102,275 (1.1)	156 (0.0)		86,686 (37.1)	15,433 (0.3)
Total	9,638,301 (100.0)	3,645,773 (100.0)	249,273 (100.0)	233,660 (100.0)	5,509,596 (100.0

*Most estimates from (1); some were made as described in Methods. Numbers of illnesses are the most probable estimate, as described in Methods. Estimates are rounded; some row and column sums may differ from their totals. Blank cells indicate no data. †Indicates commodity group.

To protect and improve the health and environment of all Kansans

Common Sources

Point Prevalence Sampling of Retail Chickens:

Salmonella

- Retail raw chicken: 12% (meat) to 44% (skinned parts such as chicken breasts, thighs)
- Breaded Not-ready-to-eat: 27%

Campylobacter

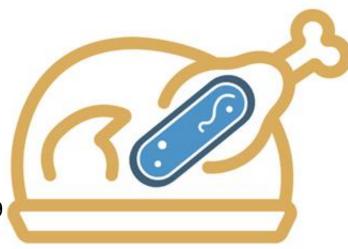
- Retail raw chicken: 36%
- Farm chicken: 19%

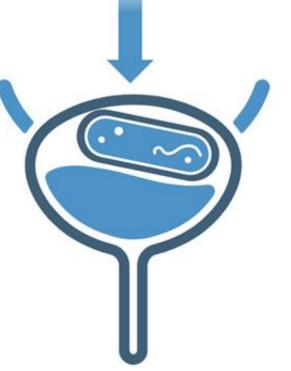
Photo: chicken.ca/

Sources: Guran S et al., Food Control 2017; 73(B): 462-67. FDA Chicken <u>Survey</u>, 2023. Poudel et al, Am Soc Micro 2022;10(3).

Extra-intestinal Infections

California: young healthy female *E. coli* UTIs (2001)


- 49% E. coli Bactrim-resistant UTIs same E. coli O11/O77/O17/O73:K52:H18-ST69 clonal group
- Spread to drug-resistant UTIs and pyelonephritis in Michigan, Minnesota, Colorado

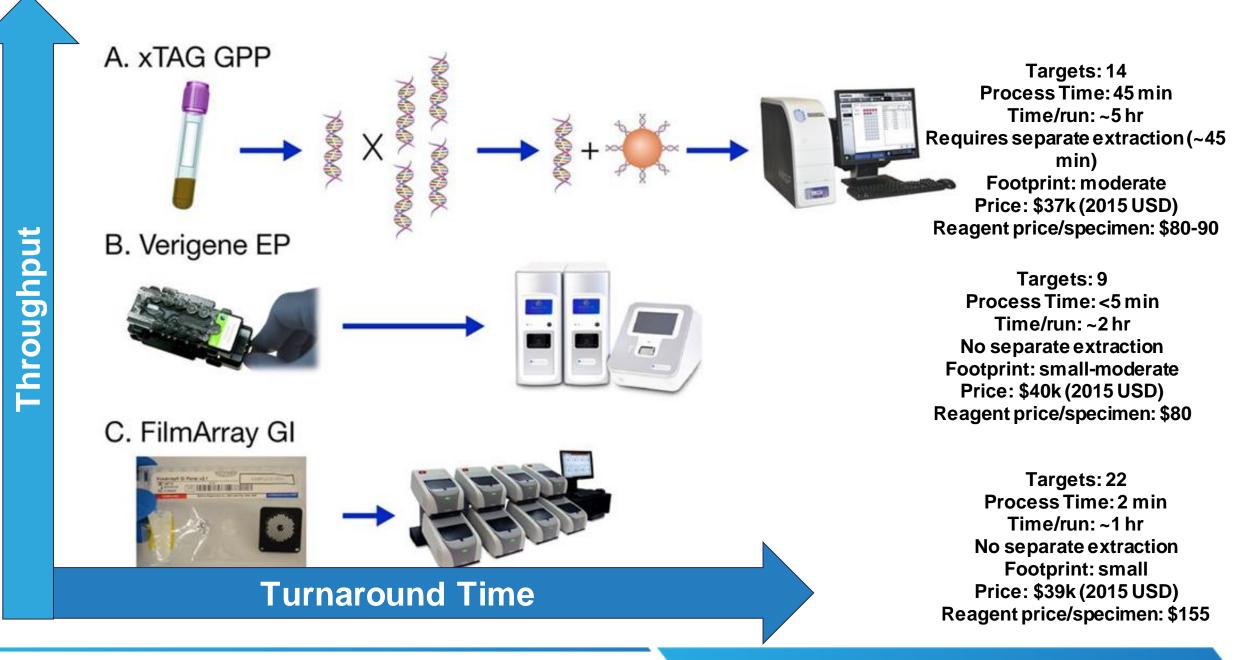

Arizona: point prevalence study identifies same chicken and pork *E. coli* with community *E. coli* UTIs (2018)

- Over 12 months, samples from chicken and pork concurrent human urine cultures, whole genome sequencing identified common sequence (ST131) in 15% of human isolates (182/1888) and 13th most common sample from meats (1.3%, 25/1923) with 84% poultry meat sharing same ST131-H22 plasmid
- 1/3 of the human *E.coli* isolates were resistant to > 3 antibiotic classes

Case-control study MDR E. coli UTIs

 Greater chicken intake associated 3.7 greater odds (OR 3.7, 95% CI 1.1-12.4) of MDR UTI, 4-fold greater odds of ESBL *E. coli* UTI with excess pork intake (OR 4, 95% CI 1-15.5)

Diagnosis: Culture Independent Diagnostic Tests (CIDTs)


Detection of gene or antigens of specific pathogens

- Multiplex PCR panels or "syndromic panels"
- Luminex GPP (first FDA approved panel in 2013)
- BioFire FilmArray GI Panel (FDA approved 2014)
- Verigene EP nucleic acid test (FDA approved 2014)

Targets Included on Commercial, FDA-cleared GI Multiplex Assays

	Multiplex panel ^b			
Target ^a	Verigene EP	FilmArray GI	xTAG GPP	
Aeromonas		IUO°		
Campylobacter	\checkmark	\checkmark	\checkmark	
Clostridium difficile (toxin A/B)		\checkmark	\checkmark	
Plesiomonas shigelloides		\checkmark		
Salmonella	\checkmark	\checkmark	~	
Yersinia enterocolitica	\checkmark	\checkmark	RUOd	
Vibrio spp.	\checkmark	\checkmark	~	
EAEC		\checkmark		
EPEC		\checkmark		
ETEC		\checkmark	~	
STEC (stx ₁ and stx ₂)	√e	\checkmark	~	
E. coli 0157		\checkmark	~	
EIEC ^f /Shigella	\checkmark	\checkmark	~	
Cryptosporidium		~	~	
Cyclospora cayetanensis		\checkmark		
Entamoeba histolytica		\checkmark	~	
Giardia lamblia		~	~	
Adenovirus 40/41		\checkmark	~	
Norovirus GI/GII	\checkmark	\checkmark	~	
Rotavirus A	\checkmark	\checkmark	\checkmark	
Sapovirus		\checkmark		
Astrovirus		\checkmark		

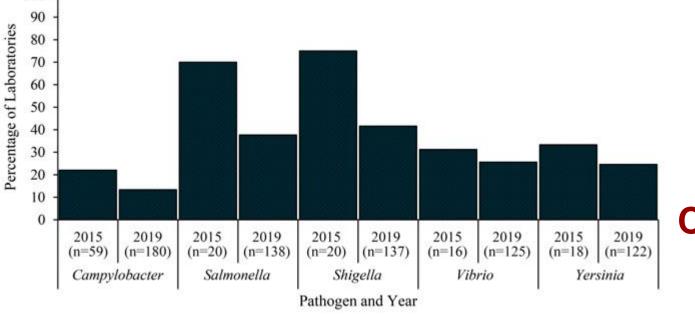
To protect and improve the health and environment of all Kansans

Source: Binnicker M. J Clin Micro 2015;53(12).

Culture Independent Diagnostic Tests (CIDTs)

From 2012 onwards, labs using molecular GI tests has increased significantly, corresponding to decreases in conventional cultures

Source: Ray L., et al. OFID 2022;9(8): afac344, <u>https://doi.org/10.1093/ofid/ofac344</u> Published by Oxford University Press on behalf of Infectious Diseases Society of America 2022. This work is written by (a) US Government employee(s) and is in the public domain in the US.


Percentage of Labs Performing CIDT (blue)

Campylobacter 100Percentage of Laboratories 80 60 40 20 2012 2013 2014 2015 2016 2017 2018 2019 (n=451) (n=446) (n=444) (n=410) (n=407) (n=401)(n=378)(n=383)Shiga Toxin–Producing Escherichia coli 100 Percentage of Laboratories 80 60 40 20 2012 2013 2014 2015 2016 2017 2018 2019 (n=406)(n=395) (n=393) (n=387) (n=386) (n=386)(n=347)(n=357)

To protect and improve the health and environment of all Kansans

Diagnostic Stewardship

Percentage of Labs Performing Reflex Cultures

2015 to 2019 proportion of laboratories reflexing CIDTs to culture

100

Source: Ray L., et al. OFID 2022;9(8): afac344, <u>https://doi.org/10.1093/ofid/ofac344</u> Published by Oxford University Press on behalf of Infectious Diseases Society of America 2022. This work is written by (a) US Government employee(s) and is in the public domain in the US.

Pros

- Rapid
- Detect pathogens directly from stool
- Easier than traditional lab-based tests
- Batching of samples
- Detects multiple pathogens same specimen
- Greater sensitivity
- Cheaper (sometimes)

Cons

- No data on antibiotic susceptibilities
- No data on strain types
- Unable to link to outbreaks (wholegenome sequencing, need the isolate)
- Over-sensitivity \rightarrow over-diagnosis
- Doesn't distinguish viable pathogen (only DNA or RNA)

Diagnostic Stewardship

Implications of multiplex PCR panels

- Because unable to distinguish viable from non-viable pathogens, shedding or positive results for long periods following resolution of disease (especially problematic for norovirus, rotavirus, Salmonella)
- Increases GI positive results by 2 to 4-fold compared to conventional methods
 - Clinicians faced with dilemmas of interpreting presence of organisms that have not been routinely tested for in the past (e.g., sapovirus, EPEC)
 - Co-infection rates increase insufficient data available to guide laboratorians and clinicians on how to interpret
- Routine cultures will still be needed to determine appropriate treatment
- Increased C.diff detection in colonized, with potential impacts on isolation and treatment decisions (PCR only, not a 2-step test)

Norovirus Outbreak Response and Control

Steps	Control Interventions	
Report	 Report suspected outbreak to KDHE, work with public health staff Information to collect: Date of earliest illness? When did other illnesses occur? How many residents in fact How many have been ill? How many staff and how many have been ill? Have infected residents been in 1 or wing, or spread across facility? Have any dietary or food staff been ill? Complete line listing of infected residents 	,
Test	Submit stool specimens, KDHE staff can assist in KHEL submissions	
Survey	Implement active daily surveillance for gastroenteritis among residents and staff	
Infection Control	Place patients with suspected norovirus gastroenteritis on contact precautions until symptom-free at least 48 hours For the duration of the outbreak, increase frequency of hand hygiene audits on affected units, pre- written and verbal staff feedback	
Cohort	Cohort residents to single unit or area if possible (symptomatic, asymptomatic exposed or asymptomatic unexposed patient groups) Symptomatic patients remain in room (social distancing)	

Download: health.pa.gov/topics/Documents/Programs/HAIP-AS/Norovirus%20Toolkit.pdf

To protect and improve the health and environment of all Kansans

Norovirus Outbreak Response and Control

Steps	Control Interventions
Hand Hygiene	 Promote adherence to hand hygiene among healthcare workers, patients, visitors Use soap and water during outbreaks
PPE	Use PPE (gowns and gloves) when entering affected patient care areas and remove carefully to avoid contaminating clothing
Transfers & Admissions	 When transferring ill patients, notify receiving facility to ensure continuation of contact precautions When transferring well patients, notify receiving facility of presence of a suspected gastrointestinal outbreak
Cleaning & Disinfection	 Commercial disinfection products registered with EPA for use in healthcare facilities; follow manufacturer instructions for method of application, amount, dilution and contact time <u>EPA's Registered Antimicrobial Products Effective Against Norovirus</u> (not all commercial cleaning products act dually as a disinfecting agent) Routine cleaning, disinfection of high-touch environmental surfaces (commodes, toilets, faucets, telephones, door handles, computer equipment, kitchen preparation surfaces)
Staff	 Exclude ill workers from work for minimum of 48 hours after symptom resolution, upon return to work reinforce hand hygiene Cohort staff on each ward if possible ensure staff don't move between patient cohorts Limit visitation and exclude ill persons from visiting the facility via posted notices

Resources

Published: August 2019

Outbreak and Control Response Checklists

health.pa.gov/topics/Documents/Programs/HAIP-AS/Norovirus%20Toolkit.pdf

Norovirus Outbreak Management Toolkit

KEY INFORMATION

Background

Profile

Norovirus is the most common cause of foodborne disease outbreaks in the United States and is the leading cause of vomiting and diarrhes from acute gastroenteritis (inflammation of the stomach and intestines) among people of all ages in the United States.

Symptoms

- Norovinus can cause gastrointestinal illness including: diarrhea, vomiting, nausea, and stomach pain.
- Norovirus may cause severe dehydration and even death, especially in young children, the elderly and sensors with underlying Energies

Incubation

The incubation period for the virus is 12-48 hours.

Transmission

Norovirus is highly contagious, and it's only known transmission reservoir is humans. Norovirus is transmitted by the fecal oral (or vomitus oral) route through several mechanisms Direct Person-to-Person contact. Contaminated food Contaminated water Contaminated surfaces or objects Cenvironmental transmissie

Tools, line-list spreadsheet downloads, educational handouts, posters

foodsafety.uw.edu/sites/foodsafety.uw.edu/files/docu ments/norovirus/WA-IFS-CoE-Norovirus-Toolkit.pdf

Treatment

Rehydrate orally through liquids: water, juice, or ice chips.

Immunity

immunity to norovirus is not completely understood. Although immunity to some types has been observed, infection with one type of norovirus may not provide protection against other types

More Information

For more information about norovirus, how it is spread, how to identify an outbreak, and recommended prevention strategies, read the following resources to learn more:

FOOD SAFETY

For Older Adults and People with Cancer, Diabetes, HIV/AIDS, Organ Transplants, and Autoimmune Diseases

U.S. FOOD & DRUG ADMINISTRATION

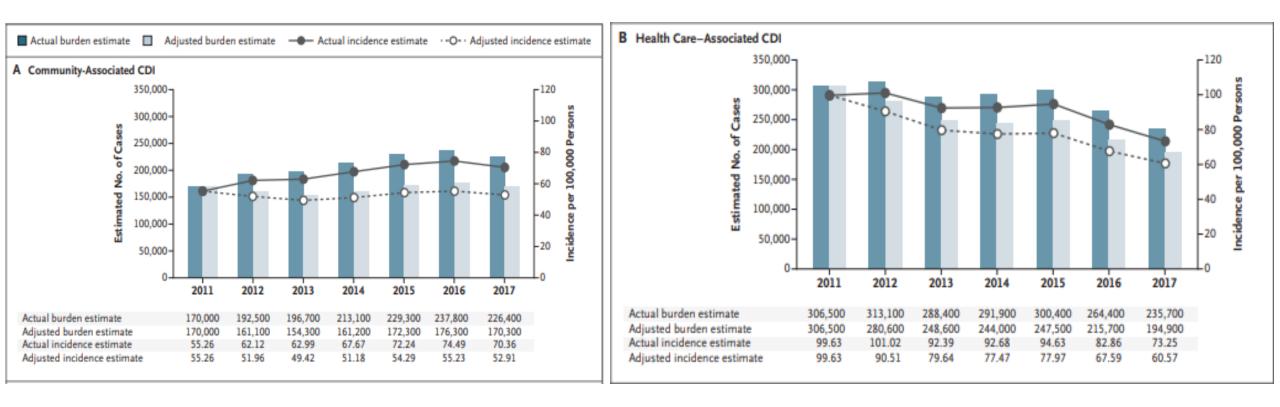
Background (specific foodspathogens), senior stories fda.gov/media/83744/download?attachment

To protect and improve the health and environment of all Kansans

Epidemiology - C. diff

ANTIBIOTIC RESISTANCE THREATS IN THE UNITED STATES

2019



- Leading cause of antibiotic- and healthcare-associated infectious diarrhea in the US
- CDC "Urgent Threat"
- Decreasing incidence of healthcare-associated CDI and increasing incidence of community-associated CDI

Sources: 2019 Antibiotics Resistance Threats Report. CDC. 2019. Guh AY, et al. N Engl J Med 2020;1320-30.

Epidemiology - C. diff

C. diff Diagnostic Tests

Test	About the Test
PCR	Highly sensitive for organism detection
Detects toxin genes	Cannot distinguish disease from colonization
Stool toxin EIA Detects <i>C. diff</i> toxins A & B	Analytical limit of detection ~1 ng/mL for each toxin Less sensitive than PCR Good specificity (96%-98%) vs culture
EIA for <i>C. diff</i>	Good sensitivity
glutamate	Specificity is poor; cannot distinguish b/w toxigenic and
dehydrogenase	nontoxigenic strains

Sources: Crobach M., et al. Clin Microbiol Infect 2009; 15: 1053 Eastwood et al. J Cin Microbiol 2009;47:3211 Crobach M., et al. Adv Exp Med Biol 2018;1050-27

Dilemmas and Challenges in C.diff Diagnosis

Unable to differentiate colonization vs infection with PCR testing

Results in

- May result in:
 - Overdiagnosis
 - Overtreatment
- Especially in low pretest probability
- There is no "gold standard" test

- Treatment of colonization
- Increasing development MDROs
- Recurrent C.diff diagnosis
- Increased healthcare costs

Clinical assessment for C. diff is critical to appropriately interpreting lab findings

Diagnostic Algorithm: IDSA Recommendations

Use toxin stool test as PART of:

Multi-step algorithm (e.g., toxin + PCR) rather than PCR alone

- Patients with unexplained and new onset of >3 unformed stools in 24h
- No role for repeat testing (within 7 days) during same episode of diarrhea
- Do not test from asymptomatic patients

Post-Infectious GI symptoms

Observational cohort of *C. diff* cases vs matched non-*C. diff* controls (n=41)

6 months post-*C. diff* infection (CDI), 1 in 4 with CDI met definition for new-onset irritable bowel syndrome (IBS) &/or functional GI disorders

Condition, n (%)	CDI Cases	Non-CDI Controls	<i>P</i> Value
Irritable bowel syndrome or functional GI disorders	22% (9/41)	0 (0)	.0024
Irritable bowel syndrome	12.2% (5/41)	0 (0)	NS
Persistent (functional) diarrhea	14.6% (6/41)	0 (0)	.023
Abdominal bloating	9.7% (4/41)	0 (0)	NS

NS = not significant

Post-Infectious GI symptoms

Observational case-control 1998-2007 C. diff (n=891)

14.1% cases post-6 months CDI developed IBS, dyspepsia, GERD, or functional diarrhea

Condition	Rate Ratio (CDI cases vs Non-CDI controls)	95% Confidence Interval
Irritable bowel syndrome	6.1	2.9-12.9
GERD	1.9	1.4-2.6
Dyspepsia	3.3	1.4-7.7

C. diff Treatment Guidelines

Diagnosis	Recommended Treatment	Alternative Treatment	Adjunctive
Initial episode	Fidaxomicin 200 mg BID x 10 days	PO Vancomycin 125 mg QID x 10 days If no other available agents: metronidazole 500 mg TID x 10 days	Bezlotoxumab may be considered during first episode if risks for <i>C. diff</i> recurrence are present
First recurrence	Fidaxomicin 200 mg BID x 10 days OR Fidaxomicin 200 mg BID x 5 days or QOD x 10 days (#20)	PO vancomycin tapered/pulsed regimen: 125 mg QID x 10-14 days 125 mg BID x 7 days 125 mg QD x 7 days 125 mg q2-3d x 2-8 wks OR PO Vanc 125 mg QID x 10 days	Bezlotoxumab
Second recurrence (i.e., 3 <i>C. diff</i> episodes) or more	Same	Same	Bezlotoxumab OR Fecal transplant (expert panel suggestion that have had recurrence at 3rd <i>C. diff</i> episode with appropriate antibiotics)

Source: Johnson S., et al. CID; 2021; 73(5): e1029-44.

Updated 2021 IDSA/SHEA C. diff Guidelines

In patients w/ recurrent *C. diff,* should **fidaxomicin** be used over vancomycin?

Outcomes	Participants		Anticipated A	Absolute Effects
(Follow-up)	(Studies)	RR (95% CI)	Risk With Vancomycin	Risk Difference With Fidaxomicin (95% CI)
Sustained CDI resolution (30 days after Tx)	253 (3 RCTs)	1.27 (1.05-1.54)	558 per 1000	151 more per 1000 (34 more to 269 more)
Sustained CDI response (90 days after Tx)	75 (1 RCT)	1.56 (0.99-1.14)	410 per 1000	229 more per 1000 (9 more to 449 more)
CDI initial clinical cure (2 days after Tx)	253 (3 RCTs)	1.03 (0.94-1.14)	853 per 1000	26 more per 1000 (58 fewer to 110 more)
Serious adverse events (follow-up 90 days)	75 (1 RCT)	0.68 (0.35-1.29)	410 per 1000	132 fewer per 1000 (345 fewer to 80 more)
All-cause mortality (follow-up 90 days)	75 (1 RCT)	0.81 (0.20-3.38)	103 per 1000	19 fewer per 1000 (150 fewer to 112 more)

Tx = treatment

Fidaxomicin Logistical Issues

- Challenges with cost/coverage and availability
- Prescribing best practices
 - Evaluate insurance coverage
 - Private: Variable coverage → check eligibility for patient assistance program (PAP)
 - Government (Medicare/Medicaid): Variable coverage; typically not eligible for PAP
 - None (self-pay): Check eligibility for PAP
 - Be prepared to issue back-up prescription for PO vancomycin

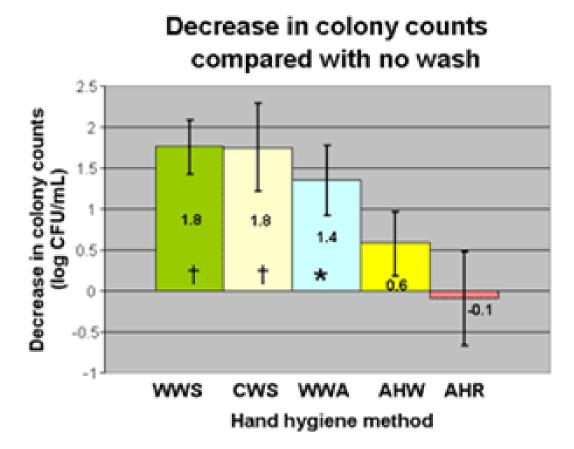
Fidaxomicin Merck PAP

- Provides fidaxomicin at **no cost** to eligible patients
 - Approval process takes ~20 minutes once receive paperwork
 - Can expedite shipping so patients receive product the next day
 - Max 90-day supply at a time, up to 3 refills; valid for 12 months
- Eligibility (note, some patients have received exemptions beyond these criteria)
 - US resident with prescription
 - Do not have prescription insurance
 - Cannot afford medication (income-based)

To access, use the following links:

Tablets: merckhelps.com/DIFICID%20Tablets

Enrollment Form: <u>merckhelps.com/MPAP/MPAP_Enrollment_Form_US-NON-06566_English.pdf</u> Oral suspension: <u>Merck Programs to Help Those in Need - Product (merckhelps.com)</u>

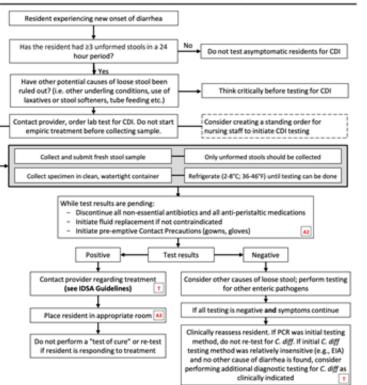

CDI Outbreak Response and Control

Steps	Control Interventions
Report	 Report suspected outbreak to KDHE, work with public health staff Information to collect: Date of earliest illness? When did other illnesses occur? How many residents in facility? How many have been ill? How many staff and how many have been ill? Have infected residents been in 1 unit or wing, or spread across facility? Have any dietary or food staff been ill? Complete line listing of infected residents
Test	Submit stool specimens, KDHE staff can assist in KHEL submissions
Survey	Implement active daily surveillance for diarrhea among residents and staff
Infection Control	 Place in contact precautions until 48 hours after diarrhea is resolved (for outbreak settings) For the duration of the outbreak, increase frequency of hand hygiene audits on affected units, provide written & verbal staff feedback Private patient room preferable, especially for incontinent residents - if not available, cohort with dedicated commodes Use dedicated equipment for each patient Use single-use, disposable thermometer
Hand Hygiene	 Promote adherence to hand hygiene among healthcare workers, patients, visitors Use soap and water during outbreaks

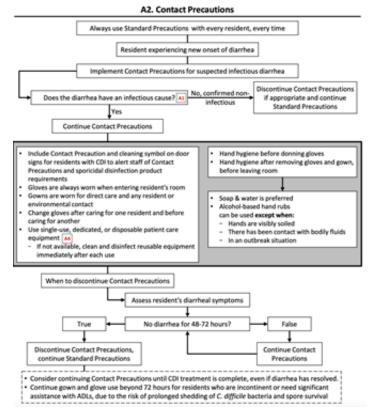
Norovirus Outbreak Response and Control

Steps	Control Interventions
PPE	 Use PPE (i.e., gowns and gloves) when entering affected patient care areas and remove carefully to avoid contaminating clothing Change gloves immediately if soiled Change gown & gloves in between patients if cohorting
Transfers & Admissions	 When transferring ill patients, notify receiving facility to ensure continuation of contact precautions When transferring well patients, notify receiving facility of presence of a suspected gastrointestinal outbreak
Cleaning & Disinfection	 Commercial disinfection products registered with EPA for use in healthcare facilities; follow manufacturer instructions for method of application, amount, dilution and contact time <u>EPA's Registered Antimicrobial Products Effective Against C.diff</u> (not all commercial cleaning products act dually as a disinfecting agent) Routine cleaning, disinfection of high-touch environmental surfaces (e.g., commodes, toilets, faucets, telephones, door handles, computer equipment, kitchen preparation surfaces)
Antimicrobial Stewardship	 Establish multidisciplinary (i.e., medical staff, nursing, pharmacy) efforts to monitor and improve antibiotic use Evaluate antimicrobial use among CDI patients and share with your medical staff and facility leadership

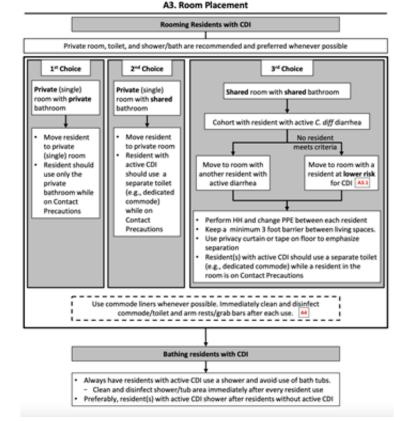
Efficacy Hand Hygiene Methods for Removing *C. diff* Contamination from Hands


WWS = warm water and soap CWS = coldwater and soap WWA = warm water and antibacterial AHW = alcohol hand wipe AHR = alcohol hand rub CFU = colony forming units. Different from AHR (P<0.05) Different from AHR and

Source: Oughton M., et al. 47th Annual ICAAC Meeting; 2007; Sept 17-20


To protect and improve the health and environment of all Kansans

Resources


A1. Early Recognition and Testing

Early Recognition & Testing Algorithm

Contact Precautions Algorithm

Room placement Algorithm

Download: health.state.mn.us/diseases/cdiff/hcp/ltcalgorithms.pdf

To protect and improve the health and environment of all Kansans

Resources

Example CDI Prevention and Control Policy

Policy: Clostridium difficile Infection (CDI) Prevention and Control and Treatment of Residents

Purpose: The purpose of this policy is to reduce the acquisition and transmission of C. difficile in this facility, and to provide guidelines for the care of residents with CDL.

Facility Name: Effective date:

Review date:

Approvals: [Medical director, or other approving authority] Responsibility: [nursing staff, environmental services/housekeeping, etc.]

Background Information

- · Clostridium difficile is an anaerobic, Gram-positive, spore-forming bacteria
 - C. difficile spores can remain in the environment for months if contaminated surfaces and/or items are not properly cleaned and disinfected
- The bacteria are found in feces, and transmitted via the fecal-oral route. Health care workers
 can spread the bacteria to other residents or contaminate surfaces through hand contact.
- Risk factors for CDI are:
 - o Recent antibiotic use
 - o Age >65 years
 - o Other serious illnesses
- · Signs and symptoms of CDI:
 - o Watery, liquid diarrhea lasting for 3 or more days
 - o Fever
 - o Loss of appetite
 - o Abdominal pain/cramps
 - o Nausea

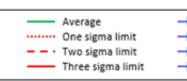
Procedure

I. Early Recognition of CDI and laboratory testing

1. Consider CDI in a resident who has ≥3 unformed stools in a 24-hour period with no other

C. diff IPC Policy

health.state.mn.us/diseases/cdiff /hcp/ltctoolkit/expolicy.docx Community-Onset Clostridioides difficite Infection (CO CDI) Control Chart

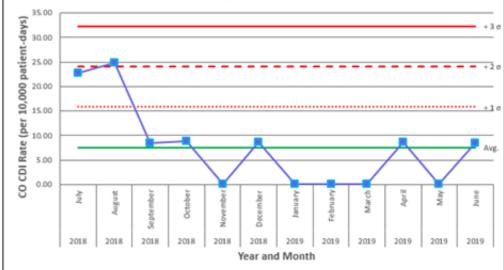

Instructions

- For current standardized surveillance definitions for this measure, see the CDC's NHSN protocol: MDRO and CDI Module Protocol
- Option 1 (preferred): For facility-wide surveillance, collect the count of infections (numerators) and the count of patient days (denominators) for the whole facility's inpatient population, by month, for a one year period.
- Option 2: For inpatient unit surveillance, collect the count of infections (numerators) and the count of patient days (denominators) for the unit, by month, for a one year period. In the chart title, add the name of the unit (e.g. ... "Patient-days in <u>Add</u> <u>Unit Name</u>, by Month.")
- Option 3: For outpatient unit surveillance, specifically
 emergency departments or 24-hour observation units, collect the
 count of infections (numerators) and the count of admissions
 (denominators) for the unit, by month, for a one year period. In the
 chart title, change the name of the denominator "Patient-days" to
 "Admissions", and add the name of the unit (e.g. ...per 10,000
 <u>Admissions in Add Unit Name</u>, by Month."). Change the y-axis
 label to reflect the denominator is "...per 10,000 admissions",
 rather than "per 10,000 patient-days.

July

2018

- Select the month you want to begin with:
- Enter year of the month you want to begin with:
- Enter the count of infections and patient days, or admissions, to the corresponding month. Only edit the purple cells.



- A single point outside the three sigma limit
 Two of three points outside the two sigma limit
- Four of five points outside the one sigma limit
- Eight points in a row on the same side of the average

Surveillance HAI Spreadsheet

kdheks.gov/epi/hai/CAH_Toolkit/Spreadsheet_2_I nteractive_HAI_Tracking_Tools.xlsx

Control Chart of Community-Onset *Clostridioides difficile* Infection (CO CDI) Rate per 10,000 Patient-days, by Month.

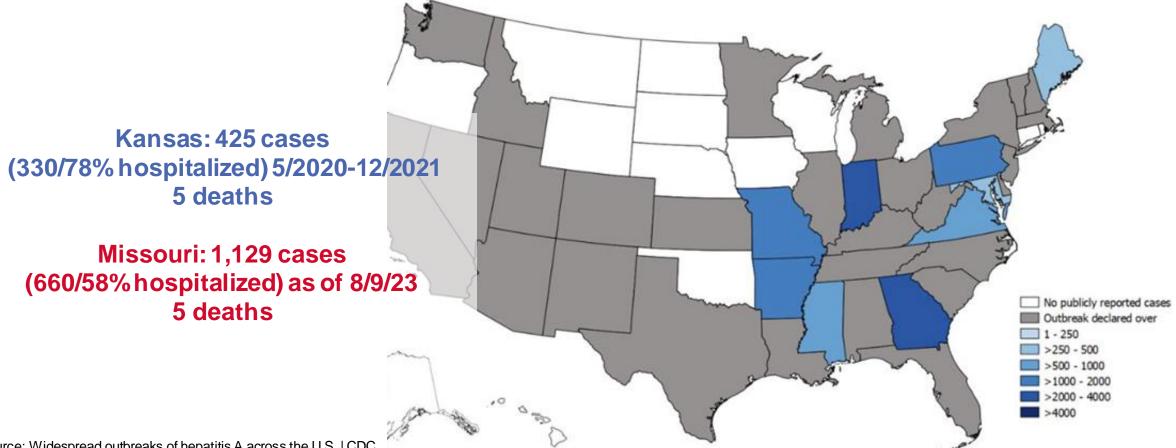
 Year
 Month
 Infections
 Admission
 Bate

 2018
 July
 3
 1318
 22.76

 2018
 August
 3
 1212
 24.75

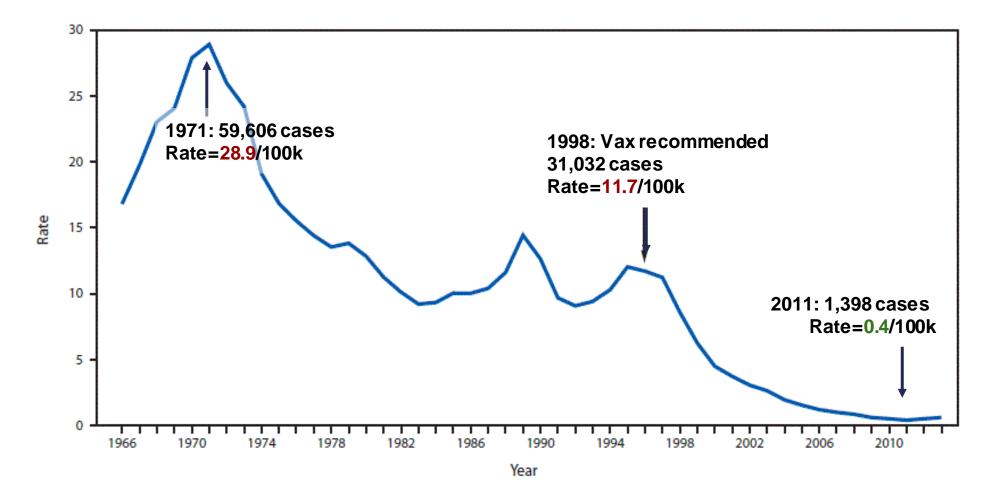
 2010
 Converting
 1
 100
 0.20

Hepatitis A Virus (HAV) Outbreaks

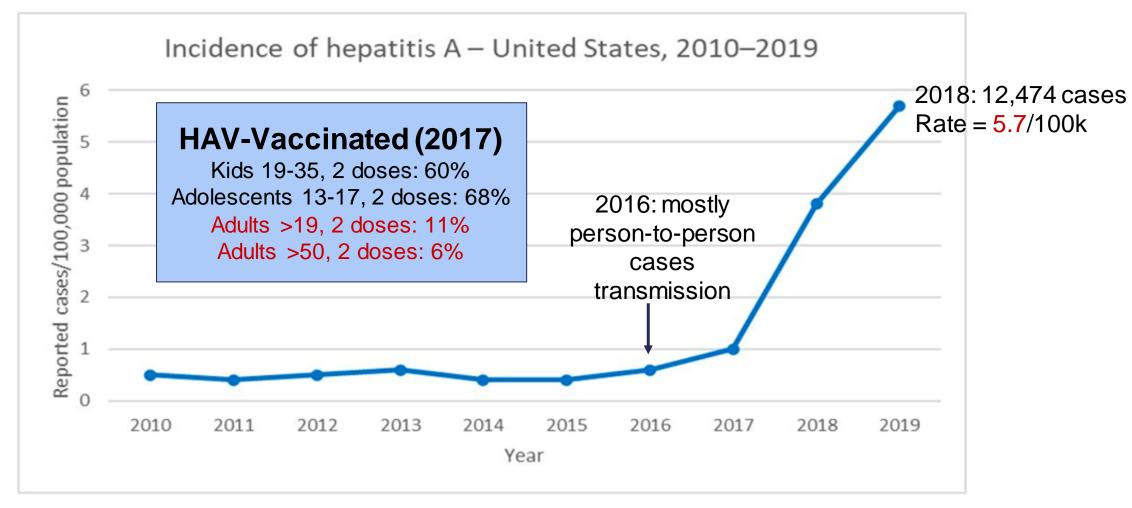

CDC 24/7: Saving Lives, Protecting People	A-Z Index Search Q Advanced Search				۹			
Viral Hepatitis								
Viral Hepatitis > Outbreaks > Hepatitis A Outbr		0	0	6	۲			
Cutbreaks Hepatitis A Outbreaks Widespread outbreaks of hepatitis A across the United States Frequently Asked Questions: Hepatitis A outbreaks	Widespread person-to-person outbr across the United States	ceaks of h	lep	ati	tis	A		
Interim outbreak-specific guidance on hepatitis A vaccine administration Outbreaks of hepatitis A are occurring across the United States Multistate Outbreak of Hepatitis A + Virus Infections Linked to Fresh Organic Strawberries - 2022	 When hearing about hepatitis A, many people think about contaminated food and water. However, in the United States, hepatitis A is more commonly spread from person to person. Since March 2017, CDC's Division of Viral Hepatitis (DVH) has been assisting multiple state and local health departments with hepatitis A outbreaks, spread through person-to-person contact. The hepatitis A vaccine is the best way to prevent hepatitis A virus (HAV) infection The following groups are at highest risk for acquiring HAV infection or developing serious complications from HAV infection in these outbreaks and 	Since the out identified in 2 publicly report of September • Cases: 44, • Hospitaliz • Deaths: 42	2016, 3 rted the r 16, 20 655 ations:	7 state e follo)22	es have wing a	IS		

should be offered the hepatitis A vaccine in order to prevent or control an

Source: cdc.gov/hepatitis/outbreaks/2017March-HepatitisA.htm

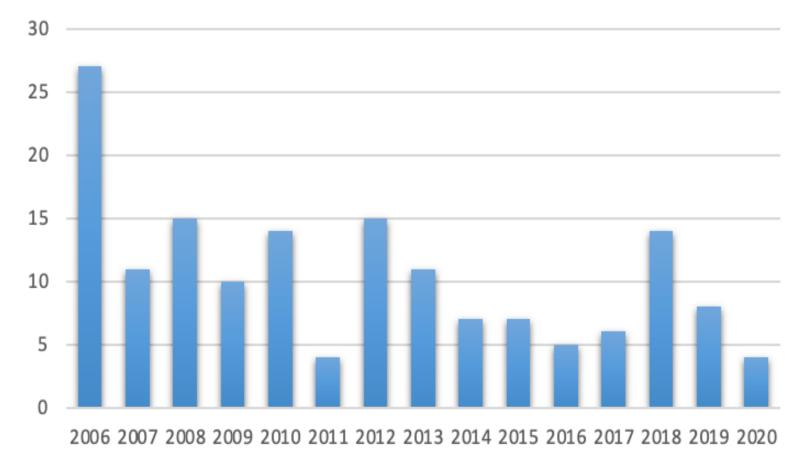

HAV Outbreaks

State-Reported HAV Outbreak Cases as of Sept 1, 2023

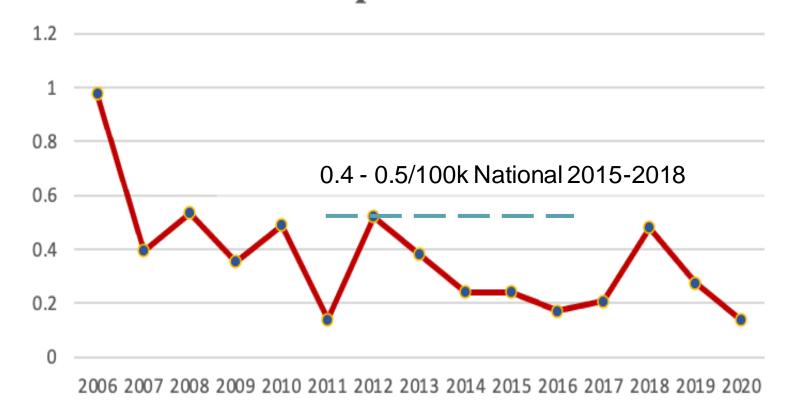


Source: Widespread outbreaks of hepatitis A across the U.S. | CDC cdc.gov/hepatitis/outbreaks/2017March-HepatitisA.htm

National HAV Epidemiology



National HAV Epidemiology


Source: MMWR 2018;66:1171-77

Kansas HAV Epidemiology HAV Cases in Kansas 2006-2020

Source: kdhe.ks.gov/Archive.aspx

Kansas HAV Epidemiology Kansas HAV Incidence per 100,000 Population

Source: kdhe.ks.gov/Archive.aspx

HAV Vaccine

Combination inactivated HAV + HBV vaccine

- 3 dose (0, 1, & 6 months)
- >18 years

Tradename: Twinrix

Inactivated antigenic HAV vaccines

- 2 doses (0 & 6-12 months apart)
- Lifelong immunity
- >1 year

Tradename: Havrix

Vaccine Efficacy

HAV Havrix

- Seroconversion following primary series ~100% (healthy adults)
- Ab persistence 20+ years in >95% healthy adults
- Since HAV vaccination available in '95, HAV prevalence decreased 95%

Yet... ³⁄₄ of Americans remain susceptible

Highest Risk

- Homeless
- Drug abuse/IVDU
- Cirrhosis
- HIV
- MSM
- Healthcare workers / work with high-risk people
- Endemic regional travels

Strategies to improve patient and worker vaccinations

Facility-Based

- Standing orders (e.g., on admit or discharge) rather than requiring physician's signature
- High-risk patients by diagnoses and age (identified by EHR or physician, nurse, pharmacist or IPaC)
- Leadership support (visibly vaccinate institutional leaders)

Provider-Based

- Practice-based tracking systems to identify high-risk adults and remind during visit
- Preventative checklists
- Meta-analysis of 41 studies: reminders improved vaccination rates 80%

Quality of Care Metric

 IDSA issued Executive Summary on Immunization Coverage, citing need to care and other organization promote immunization as indicator of healthcare quality in managed s

Occupational Health Partnership

- Offer flexible worksite vaccine delivery (e.g., multiple locations and times, via mobile carts)
- Offer free access w/o out of pocket expense to HCWs
- Monitor and report rates (ID areas/sectors with low coverage for targeted intervention)

Sources: Szilagyi P., JAMA 2000; 284(14):1820; IDSA Executive Summary. CID. 2007;44(12):1529-31

Kellie Wark, MD, MPH AS Lead Kellie.Wark@ks.gov

Bryna Stacey, MPH, BSN, RN, CIC HAI/AR Section Director Bryna.Stacey@ks.gov

Thank You!

Loretta Fitzgerald, RN, BSN Quality Improvement Consultant – Infection Control Ifitzgerald@kfmc.org

To protect and improve the health and environment of all Kansans